
TARDIS: Software-Only System-Level Record and Replay
in Wireless Sensor Networks

Matthew Tancreti1, Vinaitheerthan Sundaram2, Saurabh Bagchi1,2, and Patrick Eugster2,3,*

1School of Electrical and Computer Engineering, Purdue University

2Department of Computer Science, Purdue University

3Department of Computer Science, TU Darmstadt

ABSTRACT
Wireless sensor networks (WSNs) are plagued by the pos-

sibility of bugs manifesting only at deployment. However,
debugging deployed WSNs is challenging for several reasons—
the remote location of deployed sensor nodes, the non-deter-
minism of execution that can make it difficult to replicate a
buggy run, and the limited hardware resources available on
a node. In particular, existing solutions to record and replay
debugging in WSNs fail to capture the complete code exe-
cution, thus negating the possibility of a faithful replay and
causing a large class of bugs to go unnoticed. In short, record
and replay logs a trace of predefined events while a deployed
application is executing, enabling replaying of events later
using debugging tools. Existing recording methods fail due
to the many sources of non-determinism and the scarcity of
resources on nodes.

In this paper we introduce Trace And Replay Debugging
In Sensornets (Tardis), a software-only approach for deter-
ministic record and replay of WSN nodes. Tardis is able to
record all sources of non-determinism, based on the observa-
tion that such information is compressible using a combina-
tion of techniques specialized for respective sources. Despite
their domain-specific nature, the techniques presented are
applicable to the broader class of resource-constrained em-
bedded systems. We empirically demonstrate the viability
of our approach and its effectiveness in diagnosing a newly
discovered bug in a widely used routing protocol.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Wireless Sensor Networks, Tracing, Debugging, Replay

∗ P. Eugster is partially supported by the German Research
Foundation (DFG) under project MAKI (“Multi-mechanism
Adaptation for the Future Internet”).

(c) ACM, (2015). This is the author’s version of the work. It is posted here by permis-
sion of ACM for your personal use. Not for redistribution. The definitive version was
published in Proceedings of the 14th ACM/IEEE Conference on Information Process-
ing in Sensor Networks.
IPSN ’15, April 14 - 16, 2015, Seattle, WA, USA
Copyright 2015 ACM 978-1-4503-3475-4/15/04...$15.00
http://dx.doi.org/10.1145/2737095.2737096

1 Introduction
Debugging is one of the fundamental tools for identifying

software defects (“bugs”). Debugging is particularly relevant
in wireless sensor networks (WSNs), as these are susceptible
to unpredictable runtime conditions. Indeed, programmers
of WSNs use tools such as simulators [20, 6], safe code en-
forcement [4], and formal testing [16] prior to deployment
of an application in the field, yet exhaustive testing of all
conditions in the lab is infeasible, because WSNs are de-
ployed in austere environments whose behavior cannot be
easily duplicated in a laboratory.

Debugging is often performed in a cyclic process of re-
peatedly executing a program and tracking down bugs. In
WSNs, cyclic debugging can be lengthy and laborious:

• Nodes are often not easily physically accessible, mean-
ing that the programmer must rely on low-power wire-
less links to painstakingly collect any data of interest.

• There may not be enough information available to im-
mediately diagnose a bug, so the network must be wire-
lessly reprogrammed with code to collect additional
debugging data. This can take minutes, and waiting
for the bug to resurface may also take some time.

Once a bug fix is applied, the network is again wirelessly
reprogrammed, and further monitoring is required to deter-
mine that the bug has been successfully fixed. The cyclic
debugging fix-and-test approach thus becomes particularly
laborious in this environment.

1.1 Record and Replay
Record and replay can potentially make the process of

cyclic debugging less tedious. With record and replay de-
bugging, program execution is recorded on-line and then
reproduced off-line. Record and replay cuts down on the
cyclic process of debugging by capturing a program’s exe-
cution such that it can be deterministically reproduced and
carefully examined off-line, perhaps in a hunt for elusive
bugs [30]. In addition, in WSNs, the recording can happen
on the nodes and the replay and debugging can happen on
the relatively resource rich desktop-class machines in the lab.
The typical workflow for record and replay in WSNs is that
during normal execution of a deployed WSN, the nodes exe-
cute instrumented binaries that record a trace of all sources
of non-determinism to flash. The trace can then be brought
back to the lab for off-line replay. This can be done either
through wireless data collection or by physically accessing a

node. In the lab, the recorded data is fed into an emulator,
which deterministically replays the node’s execution. The
replay allows a developer to examine the program’s execu-
tion, including its interactions with the environment, at any
arbitrary level of detail, such as through setting breakpoints
or querying the state of memory. Such replay helps the de-
veloper identify the root cause of bugs encountered in the
field.

1.2 Challenges of Record and Replay in WSNs
However, realizing record and replay for WSNs (and to

some extent in other embedded systems) is challenging for
several reasons:

Resource constraints: The record system must fit within the
bounds of the severe resource constraints typical of WSNs.
In an effort to reduce the cost, size, and energy consump-
tion of sensor nodes, the main processor and non-volatile
storage are heavily constrained in WSNs. The main pro-
cessor is typically a microcontroller (µC) which may be
limited to a few MHz and RAM in the range of tens of
KBs. Non-volatile storage is usually a flash chip which
may contain anywhere from a MB to a few GB of stor-
age. As two points of reference, the TelosB sensor node
has 1 MB of flash and the top-end Shimmer sensor node
has a 2 GB SD card for storage. Compared to the volume
of raw trace data generated during record, this storage
capacity is tiny. For example, we have observed traces
of generated at 1 MB per minute in an experiment de-
tailed in Section 3. Additionally, storing data to flash
is energy expensive, with frequent flash usage reducing a
node’s lifetime by a factor of 3 [19].

Real-time constraints: WSNs are cyber-physical systems with
soft real-time constraints. Adding instrumentation to re-
cord non-deterministic events can interfere with the tim-
ing of the application and cause it to miss its deadlines.

Portability: There are many operating systems (OSes) for
WSNs, the two most popular being TinyOS [2] and Con-
tiki [5]. Also it is not uncommon in embedded system
development to run directly on the “bare metal” with no
OS support, as demonstrated by the GoodFET JTAG
adapter [10]. Manual modification of OS drivers or sys-
tem libraries, as done in previous record and replay sys-
tems [8, 14], hinders adoption. For this reason we seek a
solution which requires minimal OS specific adaptations.
The solution should take the source code of the firmware
to be installed on the node, and produce an instrumented
version which can run directly on “bare metal”.

System-level replay: WSNs often do not have hardware en-
forced separation between application and system soft-
ware, due to a lack of hardware support on many µCs,
and prominent WSN OSes such as TinyOS [2] and Con-
tiki [5] do not have a clean separation between system
and application code. This calls for solutions that record
the complete execution of a sensor node’s processor for
replay, rather than only application components as done
in work such as liblog [8]. We call this system-level
record and replay, which is more expansive in scope than
application-level record and replay.

1.3 Tardis Approach
In this paper, we present the design and development of

a software-only system-level record and replay solution for

WSNs called Tardis. In short, we address the four chal-
lenges described above by handling all of the sources of non-
determinism and compressing each one in a resource efficient
manner using respective domain-specific knowledge. For ex-
ample, one type of non-determinism is a read from what we
call a peripheral register. These are registers present on the
µC chip, but whose content is controlled from sources ex-
ternal to the main processor. Reads to a register containing
the value of an on-chip analog-to-digital (ADC) converter
are sources of non-determinism. We can reduce the number
of bits that must be stored for tracing them by observing
that an ADC configured for 10-bit resolution in fact only
has 10 bits of non-determinism, despite the register being
16 bits in size.

The compression scheme for each source of non-deter-
minism is informed by a careful observation of the kinds
of events that typically occur in WSN applications, for ex-
ample, the use of register masking which reduces the number
of bits which must be recorded—instead of the full length
of the register, only the bits that are left unmasked need be
recorded. The compression schemes are also chosen to be
lightweight in their use of compute resources. Furthermore,
the compression is done in an opportunistic manner, when-
ever there is “slack time” on the embedded µC so that the
application’s timing requirement is not violated. By using
the different compression schemes in an integrated manner
in one system, we are the first to provide a general-purpose
software-only record and replay functionality for WSNs. By
“general-purpose” we mean that it can record and replay all
sources of non-determinism and thus Tardis can be used for
debugging all kinds of bugs, whether related to data flow or
control flow. Previous work in software-based record and
replay for WSNs has captured only control flow (e.g., Tiny-
Tracer [26]) or only a predetermined subset of variables and
events (e.g., EnviroLog [17]).

1.4 Contributions
This paper makes the following four contributions through

the design and development of Tardis.

1. We make seven domain-specific observations about the
events that are the sources of non-determinism in a
WSN. These observations lead us to specific ways of
compressing each respective kind of event.

2. We describe the first general-purpose software-only re-
cord and replay solution for WSNs. Our solution is
general-purpose in that we record all sources of non-
determinism at the system level, which also makes
our implementation easily portable to other embed-
ded OSes. We demonstrate this by collecting results
from both TinyOS and Contiki.

3. We show with experiments on real hardware, that with
the constrained resources of a typical WSN platform,
we generate a 53-79% smaller trace size compared to
the state-of-the-art control flow record and replay tech-
nique [26], while being able to capture far more sources
of non-determinism and thus able to replay an execu-
tion more faithfully.

4. We give the case study of diagnosing a previously un-
reported bug which had been in the TinyOS codebase
for over 7 years. This bug is in the widely used Collec-
tion Tree Protocol (CTP), which is used for collecting

Application
code

OS
code

Instrumented
source

TARDIS
Logger

TARDIS CIL (S2S)

Instrumentation
mapping

Binary
firmware

1. Compile-Time 2. Run-Time

3. Off-line Replay

Binary
firmware

RAM

Uncompressed
buffers

Compressed
buffers

Flash

Log

TARDIS Replay
Emulator Binary

firmware

Log Instrumentation
mapping

GCC

Figure 1: The Tardis debugging process consists of instru-
mentation at compile-time, in situ logging of trace data at
run-time, and off-line replay during debugging.

data at a base station from multiple sensor nodes, in
a multi-hop manner.

Tardis is available for download at
http://github.com/mtancret/recordreplay.

2 High-Level Design and Implementation
This section introduces the design and implementation of

Tardis.

2.1 Overview
The main capability of Tardis is to replay in an em-

ulator the original run of a sensor node faithfully down
to each instruction and the sequence between instructions.
Deterministic replay is achieved by starting from a check-
point of the processor’s state, and then replaying all sources
of non-determinism [14]. There are two broad sources of
non-determinism in WSNs: external inputs from memory
mapped I/O and the type and timing of interrupts. We will
use the term peripheral registers to refer to memory mapped
I/O, which includes registers that report the value of serial
I/O, real-time clocks, interrupt flags, analog-to-digital con-
verters, etc.

Tardis is designed to be used in situ to record events in
deployed sensor nodes for subsequent troubleshooting. The
overall operational flow is depicted in Figure 1, which de-
picts three phases: compile-time, run-time, and off-line re-
play. In the first phase, a source-to-source C code compiler
is used to insert instrumentation for recording. In the sec-
ond phase, the node executes in situ, and logs a checkpoint
and a trace of its execution to flash. It operates in the man-
ner of a black box recorder; when the flash is full, a new
checkpoint is taken and the oldest data is overwritten first.
The third phase is the replay, which happens in the labora-
tory running an emulator on a (comparatively) resource-rich
desktop-class machine. During execution of the application
on the emulator, the trace of non-deterministic data is used
to deterministically reproduce the node’s execution. These
three phases as well as their basic implementations are dis-
cussed in the following sections.

2.2 Compile Time
2.2.1 Recording Peripheral Register Reads

One goal of Tardis is to be able to record the reads
of non-deterministic peripheral registers using as little OS-
specific code as possible. This is achieved through an auto-

µC Hardware
Peripheral Registers

HPL
TinyOS

App

TARDIS LoggerInstrumentation

Figure 2: Tardis instrumentation and logger with respect
to the TinyOS stack.

mated compile-time source-to-source transformation of the
code that is to run on the sensor node. All instructions
which read from peripheral registers are identified and in-
strumented, such that, the value of the reads are intercepted
and passed to a logger during recording. This step assumes
that a configuration file has been created to specify the non-
deterministic registers of the target architecture.

We define target code as all code intended to run on the
sensor (i.e., OS and application) — WSN OSes are typically
monolithic in that all target code is compiled together into a
single binary firmware. Figure 1 presents the compile-time
process of producing an instrumented binary. First, code
files from the application, OS, and Tardis logger are fed
into Tardis CIL, a source-to-source transformer based on
the C intermediate language (CIL) [18]. Tardis CIL iden-
tifies instructions that read from peripheral registers and
instruments them, producing an instrumented source file as
one of its outputs. The other output from Tardis CIL is
an instrumentation mapping file which gives the location
of each instrumented instruction and the type of encoding
or compression applied to the logged value. A compiler,
in this case GCC, then compiles the instrumented source
into a single binary to be installed as firmware on the sen-
sor node. In the case of TinyOS, the instrumentation sits
between the peripheral registers and the hardware presen-
tation layer (HPL), as shown in Figure 2. The HPL is the
layer of code thorough which all access to external I/O must
pass. However, because Tardis identifies register reads in C
code, it does not require the target code to have an explicitly
defined HPL, for example, we tested Tardis during its de-
velopment on C code written for “bare metal” (i.e., without
an OS). At runtime, after intercepting the value read from
a peripheral register, the instrumentation passes the value
to the Tardis logger.

The replay part of Tardis uses the instrumentation map-
ping file to decide which instructions access peripheral reg-
isters and thus need to be fed from the log, and then to
determine how to decode the items in that log.

One alternative design approach would have been to man-
ually instrument the HPL to intercept all reads from pe-
ripheral registers. Such an approach would be similar to
liblog, in which a shared library (liblog) was created to
intercept calls to libc [8]. Not only would this approach
add to the manual effort of porting Tardis to different OSes,
but it would also miss out on opportunities to reduce log size
by not considering the context in which a peripheral register
value is being used in the code. For example, we describe
in Sections 3.4 and 3.3 how the identification of masking
of peripheral register values and polling loops can help to
reduce or completely eliminate logging requirements.

2.2.2 Recording Interrupts
To replay interrupts, Tardis logs the instructions at which

interrupts are delivered during run-time, and redelivers the

interrupts at the same instructions during replay. The in-
struction can be uniquely identified by the combination of
the interrupt’s return address and the loop count. Tardis
instruments every loop body in the target code with an in-
crement instruction on a global counter variable — the loop
counter. An alternative approach is to use a hardware based
performance counter to count the number of branches, how-
ever, such counters are not often found in µCs [14].

2.3 Runtime System
A single binary containing the application, OS, and Tardis

code is programmed into a sensor node. The runtime code
consists of buffering, encoding, compressing, and storing logs
to flash. The reads to peripheral registers are intercepted by
Tardis’s instrumentation and it then passes it on to the log-
ger. Note that this assumes that peripheral registers are ac-
cessed directly, rather than through indirect addressing; we
explore the implications of this assumption further in Sec-
tion 5. The update function performs the check for buffers
that are ready to be compressed or written to flash. Com-
pression and writing to flash happen asynchronously from
the calls to log values so that they do not interfere with the
real-time execution of the application. The scheduling of in-
vocation of the update function is OS specific — in TinyOS
it is called after every task execution and interrupt, while in
Contiki it is called after every thread switch and interrupt.
Also Tardis must share the flash with the OS requiring re-
source arbitration code.

The code for Tardis is mostly OS agnostic. There is a
small amount of code specific to the OS being instrumented,
it includes calling the Tardis initialization and update func-
tions. For example we added 23 lines to TinyOS and 39 lines
to Contiki.

2.4 Replay
Replay is performed centrally, say at a lab computer,

rather than at the nodes; this is similar to the design of
the overwhelming majority of record-and-replay solutions,
in embedded domains and otherwise. This means the check-
point and log must be collected at a central location. An
emulator (mspsim in our case [6]) is modified to deliver
non-deterministic register values and interrupts to the ap-
plication during replay. The emulator starts from a memory
checkpoint or known starting state (e.g., boot-up). For re-
play, the binary is executed until a register read or the next
interrupt in the log is encountered. Whenever a read from
a peripheral module register is encountered, a map file gen-
erated at compile time is consulted to determine how the
register has been encoded. Based on this information the
register is decoded from the log. The emulator also knows
the next interrupt in the log. When the return address and
loop count match the next interrupt in the log, the interrupt
is executed. Since all sources of non-determinism recorded
during runtime are fed into the emulator, this faithfully re-
produces the execution.

2.5 Debugging Workflow
A typical workflow for debugging in Tardis starts with

simple invariants used to check for the correct operation of
the network. For example, an invariant at the basestation
may check that no more than a threshold amount of time has
passed since the last message was received from each node
in the network. When any invariant is violated the bases-
tation broadcasts a command to all nodes in the network
to not overwrite their current traces. The broadcast is per-

Interrupts

State registers:

Data registers:

Baseline: Logging only
non-deterministic registers
Log growth = 12.9 KB/s

12.8%

11.2% Timer registers:

6.3%

69.7%

Interrupts

State registers:

Data registers:

TARDIS:
Log growth = 1.5 KB/s
(88.4% reduction)

51.3%

23.4% Timer registers:

17.5%

7.8%
Figure 3: Comparison between baseline and Tardis.

formed using a common dissemination protocol, which does
not depend on the routing protocol. Then a programmer is
alerted of the problem. The programmer can wirelessly col-
lect traces from the nodes in order to replay their execution.

3 Encoding and Compression of Non-Deter-
ministic Data

This section describes how we efficiently trace non-deter-
minism in Tardis.

3.1 Overview
Up until now we have described the non-deterministic

data required for replay and how Tardis instruments the
target code for logging. One may wonder why a simple
design does not suffice — record all the sources of non-
determinism during execution on the node and store them
to stable store, then bring the trace back to a central node
for replay. This is due to the fact that the rate of non-
deterministic data is too high for the resources of today’s
WSNs, even for simple regular applications.

For example, consider the TinyOS application Multiho-
pOscilloscope (MHO) that collects sensor data at each node
at a one second interval and propagates the data to a base
station at a five second interval. We ran MHO on a small
five-node network with all nodes in radio range of the base
station and Low Power Listening (LPL) enabled with a wake-
up interval of 64 ms. (More details about this experimental
setup can be found in Section 4.1.) For this configuration,
we found that recording all interrupts and reads from pe-
ripheral registers produces a log at a rate of 15.1 KB/sec.
Ignoring deterministic registers (e.g., peripheral control reg-
isters), the log rate is 12.9 KB/sec. In this paper, we use
logging all interrupts and only the non-deterministic regis-
ters as our baseline, as described in Section 3.2. A rate of
12.9 KB/sec would fill the 1 MB flash on the TelosB in 78
seconds. The flash shares the I2C bus with the radio, and
with a write throughput of 170 KB/sec, the flash would re-
quire a 7.6% utilization of the I2C bus. This could interfere
with the application. Additionally, it increases the average
power consumption by 4.4 mW, which is significant to the
TelosB which has a sleep current of just 3 µA.

In the following we describe how we meet the challenges
through careful selection of what to record (Sections 3.2-3.5)
and encoding and compression (Sections 3.6-3.8). Using ob-
servations of typical WSN applications and deployments to
guide our design, we are able to achieve significant com-
pression using low cost compression techniques. We struc-
ture the description of each technique as the observation we
glean from many WSN applications and hardware architec-
tures, followed by the technique we implement in Tardis,
and then giving the quantitative result to show the effec-
tiveness of the technique (Table 1 presents an overview of

Table 1: Summary of key ideas and benefits of Tardis compression methods.

Observation Design Result

Some registers are deterministic Consult table of register definitions 26.8% log reduction

Can skip polling loops during replay Detect and ignore polling loops 25.9% log reduction

Register reads are often masked Detect and ignore masked bits 56.7% log reduction

Nodes spend most time in sleep Return address is predictable when
interrupt during sleep

12.7% interrupt log reduction

Small delta between reads of timer Use delta encoding 72.7% timer log reduction

State registers are highly repetitive Run length enconding 47.8% state log reduction

Data registers compressible with general algorithms LZRW-T 65.7% data log reduction

these findings). These results are collected from the TinyOS
application MHO running on actual TelosB motes in a net-
work configuration described above. The snapshot of the
results are shown in Figure 3. The evaluation section shows
the overall benefit of Tardis, with all these techniques op-
erating together, for a wider variety of applications.

3.2 Non-determinism of Registers
Observation: It is not the case that all of the peripheral
registers are non-deterministic. Some of the peripheral reg-
isters are used for configuring the peripheral. For example,
IE1 is an interrupt enable register, which is used to enable
particular interrupts. The value of this register is only set by
software and is therefore deterministic. Even for those reg-
isters which are non-deterministic, it is sometimes the case
that not all of the bits in the register are non-deterministic.
For example, ADC12CTL1 is a 16-bit register that is used by
software to control the ADC. However, it has a single non-
deterministic bit, which acts as a flag to indicate whether
the ADC is busy.
Design: Tardis avoids recording reads from deterministic
registers by consulting a register mapping file that speci-
fies which registers and which specific bits are actually non-
deterministic. This file must be manually created once for
each processor architecture.
Result: Logging only non-deterministic registers as op-
posed to all peripheral registers results in a 14.5% reduction.
For all remaining results, logging only “non-deterministic
registers” is the baseline. Logging only non-deterministic
bits is a 14.4% reduction over baseline.

3.3 Polling loops
Observation: Polling loops are commonly found in embed-
ded systems code. An example of a polling loop is where the
µC transmits a byte to the SPI bus for network communi-
cation, then it stays in a loop until the transmit complete
flag is set, before transmitting the next byte. The following
code is taken from Contiki where IFG is the interrupt flag
register and TXFLG=1 is a mask for the least significant bit
that is cleared when transmission is finished for this byte.

while (IFG & TXFLG);

Design: In the example, IFG is read multiple times before
the byte has finished being transmitted. Normally, Tardis
would log each read. However, the loop itself does not mod-
ify global or local memory, and it will eventually exit. There-
fore, it is safe for replay to simply skip beyond the loop
without losing the property of deterministic replay. There
is however one consequence of skipping the loop, and that is
losing the cycle accuracy of the replay. However, the time to
transmit a byte is predictable, particularly because the SPI

bus uses a multiple of the main CPU clock for timing, and
can be accounted for by the replay emulator without needing
to keep track of how many times the check executed.
Result: Removing polling loops reduces the log size by
25.9% relative the baseline.

3.4 Register Masking Pattern
Observation: Register masking is a common pattern in
embedded systems. Take for example the case of the in-
terrupt flag register, where each bit represents a different
condition. It is common to test one specific condition, so a
register value is bitwise ANDed with a mask, which typically
has a single bit set as one. In the following line of code, a
mask (TXFLG) is applied to test if the transmit flag is set in
the interrupt flag register (IFG).

not_done_transmitting = IFG & TXFLG;

Design: It is sufficient to record only the value of the un-
masked bits. This can lead to a significant savings, in the
above example a 16-bit register read can be stored as a sin-
gle bit. Tardis CIL checks for the register reads that are
masked, and instruments the recording of only the unmasked
bits.
Result: Removing masked registers results in a reduction
of 56.7% relative to baseline.

3.5 Sleep-wake Cycling and Interrupts
Observation: An important design feature of WSN pro-
grams is sleep-wake cycling — the ability of the node to
spend most of its time in a low-power sleep mode where the
main CPU clock is disabled and only wakes up for short
bursts of activity before going back to sleep [12, 21, 22].
Without this feature the batteries of a mote such as the Te-
los would drain in days, rather than last for as long as 3
years at a 1% duty cycle.
Design: One of the sources of non-determinism is the tim-
ing of interrupts, which as described in Section 2.2.2 re-
quires logging the interrupt vector (4-bits), the return ad-
dress (16-bits), and the loop count (16-bits). This results
in a 36-bit log entry for each interrupt. However, the entry
can be significantly reduced for interrupts which wake the
node from sleep. Upon reaching a sleep instruction, Tardis
Replay knows that the next interrupt vector must be deliv-
ered, so the return address and loop count do not need to
be recorded. This is because there is only one way to exit
sleep — an interrupt.
Result: Interrupt compression results in a 12.7% reduction
of the interrupt log. The logging of interrupts accounts for
only 12.8% of the baseline log, but they are 51.3% of the log
after all other compressions have been applied.

3.6 Timer Registers
Observation: Timer registers are counters that are incre-
mented on the edges of either a real-time clock or the main
CPU clock. When a timer register either overflows or reaches
the value of a capture/compare register, a timer interrupt is
fired. The first read of a timer following a timer interrupt is
likely to result in a value which is close to the value of the
capture/compare register that caused the interrupt, or zero
if the interrupt was caused by an overflow. The difference in
time, and therefore value, between successive reads of timer
registers is likely to be small. This is because all of the ac-
tivity following an interrupt happens within a small period
of time, due to low duty cycle operation, as pointed out in
Section 3.5.
Design: The delta between subsequent timer reads is en-
coded. The exception is that first timer read following a
timer interrupt is encoded based on the difference between
the capture/compare register (or zero for overflow). Tardis
encodes the difference between the predicted value and the
actual value using prefix codes to shorten the length of small
values.
Result: Compression reduces the size of the timer log by
72.7%.

3.7 State Registers
Observation: Some of the peripheral module registers ex-
hibit strong temporal locality. For example, a flag bit that
indicates whether an overflow has occurred in a timer will
usually be set to zero, because the overflow case is less com-
mon — when the timer expires. As another example, six
capture/compare registers are used to time different events.
In a typical application, one of the capture/compare regis-
ters may be used to time a high frequency activity such as
sampling a sensor, while the others are associated with less
frequent activities. The registers with less frequent activ-
ity will contain the same state over long periods of time.
The observation is that most reads to registers reporting
the status of some peripheral module have the same value
on consecutive reads.
Design: Because of the high level of repetition, state regis-
ters are compressed with Run Length Encoding (RLE).
Result: RLE reduces the state register log by 47.8%. In
the baseline, state registers account of 69.7% of the log, but
after all compressions have been applied they account for
only 7.8% of the log.

3.8 Data Registers
Observation: Two common WSN features, sensors and ra-
dios, account for another source of non-deterministic reads.
We classify the peripheral registers that contain sensor and
radio data as data registers. These registers are quite com-
pressible due to repeated sequences. For example, radio mes-
sages contain header information that is often similar from
one message to the next. Sensor readings often have repeat-
ing values or slowly changing values because of the slowly
changing nature of the physical environment.
Design: Data registers are compressed using a generic com-
pression algorithm. We created LZRW-T, which is similar
to LZRW [1], but implemented for the MSP430 processor.
Like other LZ77 [36] based algorithms, LZRW-T uses the
previously compressed block as a dictionary. The advantage
of LZRW-T is that it has a very small memory footprint,
which is critical in systems like WSNs that have only kilo-
bytes of memory. LZRW-T is configured to use a sliding

State/Timer Stream:
if type == state then write
 0b111<6-bit index><8-bit run_length><X-bit value>
if type == timer and delta < 4 then write 0b0<2-bit delta>
if type == timer and delta < 64 then write 0b10<6-bit delta>
if type == timer and delta >= 64 then write 0b110<16-bit delta>

Generic Stream (LZRW-T):
if no matching sequence found then 0b0<8-bit value>
if matching sequence found then 0b1<8-bit offset><8-bit length>

Interrupt Stream:
if loop_count == 0 then write 0b0<4-bit vector>
if loop_count < 256 then write
 0b10<4-bit vector><16-bit return_address><8-bit loop_count>
if loop_count >= 256 then write
 0b11<4-bit vector><16-bit return_address><16-bit loop_count>

Figure 4: Logging format.

window of 128 bytes along with a hash table of 64 bytes for
a total implementation of 192 bytes in RAM.

Result LZRW-T results in the reduction of logged data reg-
isters by 65.7%.

3.9 Log Format
The log is stored in three independent streams: state/-

timer, generic, and interrupts. The bit format for the three
streams is provided in Figure 4. Every read from a state
register in the program’s code is given a unique id. In-
dexing based on read instructions rather than register ad-
dresses is necessary, because two different read instructions
of the same register may have a different number of non-
deterministic bits that need to be stored due to masking
as described in Section 3.4. Reads from timer registers are
reproduced during replay in the same order as they were
logged, so no index is required. The timer delta is stored as
described in Section 3.6. Generic register reads are stored
using the LZRW-T compression format. Interrupts require
storing a vector, a return address, and a loop count. Loop
counts are typically very small because the count is reset
after every sleep period, which lends itself to compression
using prefix codes. A loop count of zero eliminates the need
to store a return address because the replay code knows that
the next interrupt occurs immediately following the next
sleep period.

4 Evaluation
In this section, we substantiate our claim that domain-

specific compression techniques used by Tardis can signifi-
cantly reduce trace size yet operate with tolerable overheads.
To evaluate Tardis, we measured both the cost and the ben-
efit for typical WSN applications from two widely used OSes
(TinyOS and Contiki) running on real hardware (TelosB
motes). Benefit is measured by the reduction in the size of
the log stored to flash. Cost is measured by both static and
runtime overheads. Runtime overhead is measured in energy
and CPU usage, whereas the static overhead is measured in
program binary size and RAM usage. As we show in the
following, the domain-specific compression techniques used
by Tardis can significantly reduce the trace size – a 77%-
92% reduction – whilst imposing only tolerable overheads.
In addition, we demonstrate how trace sizes are reduced
by 53-79% with respect to the state-of-the-art control flow
record and replay technique TinyTracer [26] whilst enabling
diagnosis of a much wider class of bugs than TinyTracer.
Finally, we give the case study of diagnosing a previously
unreported bug.

4.1 Experimental Setup
The experiments are conducted either with a single TelosB

node, or in a network of 9 TelosB nodes. The 9 nodes are ar-
ranged in a grid with 1m separation between adjacent nodes,
and the base station is at a corner. All of the nodes are in
radio range of each other, which represents the worst case
in terms of the rate of non-deterministic inputs, because of
the radio traffic overheard at each node. The experiments
involving a single node represent an inactive network (i.e.,
no radio traffic).

The experiments are run for three benchmarks. We chose
two of the benchmarks, namely MultihopOscilloscope (MHO)
and Collect, because they are representative middleware-
type applications in TinyOS and Contiki respectively. We
chose Earthquake Monitor (EM) as the third benchmark
to test a higher-level application and one that significantly
stresses the sensors and the related computation to deal with
the sensed data.

MultihopOscilloscope (MHO) is a typical data collecting
WSN application. In MHO, each node samples a light sen-
sor at a rate of 1 Hz, and forwards the measurements to a
base station every 5 readings. By default MHO has the radio
turned on all of the time. Energy savings come through en-
abling Low Power Listening (LPL), a Media Access Control
(MAC) level protocol where the radio is turned on at a fixed
interval to perform a Clear Channel Assessment (CCA), and
immediately turned back off if there is no activity. In the
results “MHO” indicates the node being recorded is alone
and not in a network, “MHO Wakeup=” indicates LPL is
employed with the given wakeup interval, and “MHO Net-
work” indicates the node being recorded is in a network of
9 nodes. A higher wakeup interval means the node wakes
up less often, and therefore is expected to generate less non-
deterministic data. It is important to observe Tardis be-
havior in a inactive network because that is the common
condition in WSNs where LPL was designed to provide the
most significant energy savings, as the radio is turned off
most of the time.

Collect is an example application distributed with the
Contiki operating system. Its purpose is similar to that of
MHO; every 20 seconds each node sends a message contain-
ing readings for 5 different sensor sources.

Earthquake Monitor (EM) is a TinyOS application pat-
terned after [28], however we reimplemented it for our ex-
periments since the application was not available from the
authors. In EM, each node samples an accelerometer at a
rate of 100 Hz for 1 second. At the end of the sampling
period it performs a Fast Fourier Transform on the sam-
pled data, sends a message over the radio, and then begins
the next sampling period. The sample rate of 100 Hz is
considered sufficient for the application of earthquake moni-
toring [32]. We run EM in a single hop mode with each node
sending directly to a base node.

4.2 Runtime Overhead
The runtime overhead includes the amount of flash used

to store the log, and the additional energy and CPU time
expended for tracing, a cost of using Tardis.

4.2.1 Flash Size
Figure 5(a) shows the rate of log growth for Tardis and

for an uncompressed trace. We see that for MHO single
node, the log size is reduced by 92%, 94%, and 90% com-
pared to the uncompressed traces for the various wakeup

intervals—no LPL, 64 ms, and 512 ms respectively. For
MHO Network mode, the reduction in log size is 80%, 86%,
and 77% respectively. This points to the fact that with
a lightly loaded network, there is both less source of non-
determinism and the non-deterministic data is also more
compressible, e.g., states change less frequently. When going
from a wakeup interval of 64 ms to 512 ms the compressed
trace size increases along with an increase in both interrupt
and timer log sizes as seen in Figure 5(b). Although 512 ms
wakes up the radio less frequently, sending a message takes
a much longer time – 512 versus 64 ms – during which time
more interrupts and timer reads are executed. Plain MHO
is clearly the least expensive to log, because it does not need
to periodically wake the radio to perform clear channel as-
sessments, and messages are sent in the shortest time. For
EM, Tardis reduces the log rate by 83%, and for Collect
the reduction is 78%.

The worst case in terms of greatest rate of log data gen-
eration with Tardis is MHO in the network mode with a
wakeup interval of 512 ms in which the log grows at 3.3 KB/s.
This means that it will fill up 50% of the TelosB flash (i.e.,
50% of 1 MB = 500 KB) in 2.5 minutes. Compare this
to the baseline case where 50% of the flash will be utilized
for logging in just 35 seconds. 50% is significant because
that is when a new checkpoint is taken. The entire RAM
of the TelosB is 10KB and can be stored to flash in 191ms.
MHO when the network is not active fills 50% of the flash in
83 minutes. This re-emphasizes the point that in a lightly
loaded network, far less non-deterministic data is generated
and consequently, Tardis is more lightweight in its opera-
tion.

Figure 5(b) shows the size in flash of the logged interrupts
and the timer, data, and state registers. The classification of
registers is based on our observations made in Section 3. The
largest component in the case of MHO Network is interrupts
which is due to interrupts not being as compressible as the
registers as shown in Section 3. A heavily loaded network
exacerbates the issue because it reduces the opportunity for
sleep compression explained in Section 3.5.

4.2.2 Energy Overhead
The average power consumption of a Tardis instrumented

application and the respective unmodified application are
shown in Figure 6(a). When the application is not using
LPL, there is less than 1% increase in average power con-
sumption between an unmodified application and a Tardis
instrumented application. However, with LPL enabled, the
increase in power consumption is between 19% and 146%.
Programing a page (256 Bytes) into flash consumes 45mW
(a relative power hog) but it only takes 1.5 ms (a relatively
short period). The results show that the flash itself is not
what is consuming significant power. Instead it is the time
taken to record interrupts and reads, along with the time to
write to the flash, that keeps the radio active longer, and
reduces the energy savings of LPL. This can be seen by the
increase in power consumption by Tardis when going from
512 ms to 64 ms, there are 8 times as many radio wake-
ups for channel assessment at 64 ms and Tardis is keeping
the radio awake longer due to logging. Future work could
be directed at deferring encoding and flash write operations
until the radio returns to sleep. This relies on having large
enough buffers that can accommodate all the data until it
is time to write the buffer contents to flash.

0.0	
2.0	
4.0	
6.0	
8.0	
10.0	
12.0	
14.0	
16.0	

MHO	 MHO	
Wakeup	
=	 64ms	

MHO	
Wakeup	
=	 512ms	

MHO	
Network	

MHO	
Network	
Wakeup	
=	 64ms	

MHO	
Network	
Wakeup	
=	 512ms	

EM	 Collect	

Si
ze
	 in
	 F
la
sh
	 (K

B/
s)
	

TARDIS	 Uncompressed	

(a) Rate of log growth for Tardis and uncompressed.

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

MHO	 MHO	
Wakeup	 =	
64ms	

MHO	
Wakeup	 =	
512ms	

MHO	
Network	

MHO	
Network	
Wakeup	 =	
64ms	

MHO	
Network	
Wakeup	 =	
512ms	

EM	 Collect	

Si
ze
	 in
	 F
la
sh
	 (K

B/
s)
	 interrupts	

Amer	

data	

state	

(b) Size of different log components for Tardis

Figure 5: Rate of log growth and the size of different log components for Tardis. Uncompressed log rate shown for comparison.

0	
10	
20	
30	
40	
50	
60	
70	
80	

MHO	 MHO	
Wakeup	
=	 64ms	

MHO	
Wakeup	
=	 512ms	

MHO	
Network	

MHO	
Network	
Wakeup	
=	 64ms	

MHO	
Network	
Wakeup	
=	 512ms	

EM	 Collect	

Av
er
ag
e	
Po

w
er
	 (m

W
)	

TARDIS	

Unmodified	

(a) Average power consumption

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	

MHO	 MHO	
Wakeup	
=	 64ms	

MHO	
Wakeup	
=	 512ms	

MHO	
Network	

MHO	
Network	
Wakeup	
=	 64ms	

MHO	
Network	
Wakeup	
=	 512ms	

EM	 Collect	

Du
ty
	 C
yc
le
	

TARDIS	
Unmodified	

(b) CPU duty cycle

Figure 6: Average power consumption and CPU duty cycle of Tardis instrumented and unmodified applications.

4.2.3 CPU Overhead
The duty cycle, the fraction of time the CPU is active, is

shown in Figure 6(b). Unmodified MHO has a higher duty
cycle for 512 ms than 64 ms because of the longer time to
send messages. As explained with energy overhead, Tardis
keeps the node awake longer when the radio wakes up for
channel assessment which explains the higher duty cycle for
64 ms with Tardis.

CPU time could be reduced by using DMA to transfer log
pages to flash. In the current implementation, the CPU is
used to perform transfers.

4.3 Static Overhead
The program binary size, shown in Figure 7(a), increases

due to the Tardis runtime system code and the instrumen-
tation of the reads and interrupts. In the target WSN OSes
TinyOS and Contiki, there is a single image on the node that
executes. This single image consists of both the system code
and the application code and thus our program binary size
refers to the size of this single image. The Tardis instru-
mentation of the code consists of inserting calls to the logger
for loop counting, interrupts, and reads from peripheral reg-
isters. The increase in size for the tested applications range
from 23 to 25%, and they fit within the MSP430’s 48 KB of
program memory.

Figure 7(b) shows the statically allocated RAM both with
and without Tardis instrumentation. Only statically allo-
cated RAM is shown because Tardis does not use dynam-
ically allocated RAM. The increase in statically allocated
RAM is due to buffers, and the internal data structures used
in compression. Tardis consumes about 2.6 KB of RAM.
The MSP430 has a total RAM size of 10 KB. This RAM
consumption can be considered significant for some applica-
tions. However, note that this consumption is tunable, one
can trade off greater flash usage for lesser RAM usage. If
the RAM allocated to the buffers is smaller, then it will fill

0	

10	

20	

30	

40	

50	

MHO	 EM	 Collect	

Pr
og
ra
m
	 R
O
M
	 (K

B)
	

TARDIS	
Unmodified	

(a) Program size

0	

2	

4	

6	

8	

10	

MHO	 EM	 Collect	

Pr
og
ra
m
	 R
AM

	 (K
B)
	

TARDIS	
Unmodified	

(b) RAM size

Figure 7: Tardis memory overhead in terms of program
binary size and statically allocated RAM size.

up quicker and more frequent logging to flash will occur.

4.4 Comparison with gzip, S-LZW, and Tiny-
Tracer

An obvious question that arises with respect to the con-
tribution of Tardis is how well a simple compression of the
non-deterministic log would perform. We compare Tardis
to the general purpose compression algorithm gzip and
to the specialized sensor network compression algorithm S-
LZW [23]. To be suitable for sensor networks, the com-
pression algorithm should not require a significant amount
of RAM. The TelosB has only 10 KB of RAM, while gzip
uses a 32 KB sliding window, which makes it unsuitable for
our application. S-LZW was designed specifically with sen-
sor networks in mind, and uses a dictionary size of 2KB.
In comparison, the complete RAM requirements of Tardis,
which include buffers for writing to flash, is 2.6 KB. Figure 8
shows how well gzip and S-LZW compress the the trace of
non-deterministic data (i.e., reads from peripheral registers
and interrupt timings). Tardis had a reduction of log size
of 76% and 96% compared to gzip and S-LZW when com-
pressing MHO. In the case of Blink, the log of Tardis is
2.7 times larger than that of gzip and 3% smaller than
that of S-LZW. Blink is a very simple application, it repeat-

1	
10	

100	
1000	

10000	
100000	

 T
AR

DI
S	

 g
zip

	
no

n-‐
de

te
rm

in
ism

	
 S
-‐L
ZW

	
no

n-‐
de

te
rm

in
ism

	
 U
nc
om

pr
es
se
d	

no
n-‐

de
te
rm

in
ism

	

	
Ti
ny
Tr
ac
er
	

 U
nc
om

pr
es
se
d	

Co
nt
ro
l	 F
lo
w
	

Si
ze
	 in
	 F
la
sh
	 (B

yt
es
/s
)	 MHO	

Blink	

Figure 8: Size of log in flash for compression methods
Tardis, gzip, S-LZW, and TinyTracer. TinyTracer only
records control flow.

edly blinks three LEDS at regular intervals of 1 Hz, 2 Hz,
and 4 Hz, which makes the trace easily compressible by the
generic gzip. Importantly gzip has a large window size
requirement.

Another approach to trace debugging is to record and re-
play only control flow. Unlike the complete replay provided
by Tardis, control flow cannot reproduce the state of mem-
ory. Many types of bugs are difficult to diagnose with only
control flow available, for example, corruption to a message
or buffer, an out of bounds index, or an illegal pointer value.
The latter two are particularly important to µCs which have
no hardware memory protection. The control flow only ap-
proach was proposed in TinyTracer [26].

Figure 8 shows the compression results for TinyTracer.
“Uncompressed non-determinism” and “uncompressed con-
trol flow” are the uncompressed logs for Tardis and Tiny-
Tracer respectively. We observe that the size of trace gen-
erated by Tardis is 79% (for Blink) and 53% (for MHO)
smaller than the trace size of TinyTracer. This result was
counter-intuitive to us because Tardis has a more compre-
hensive set of events that it records. The reason for the log
size reduction in Tardis is that Tardis records only the
non-deterministic inputs whereas TinyTracer records the ef-
fect of non-deterministic inputs, which is the cascading set of
function calls triggered by non-deterministic inputs. Tardis
not only reduces the trace size but also aids in diagnosis of
many faults by reproducing the entire execution faithfully
including both control and data flow. In contrast, the lack
of data flow information in TinyTracer limits the types of
faults that can be diagnosed.

4.5 CTP Bug Case Study
In this section, we demonstrate how Tardis can be used

to aid in debugging, using a previously unreported bug in
the Collection Tree Protocol (CTP) as a case study [9]. The
bug is triggered when temporary network partition occurs
for several seconds due to failure of radio links in the net-
work. The consequence of the bug is that the nodes on the
far side of the partition, i.e., on the side away from the base
station, are not able to successfully route data messages to
a base station for as long as 25 minutes. This is against the
principle of CTP which is designed to repair broken routes
very quickly — typically within seconds — when data mes-
sages need to be delivered.

4.5.1 Description of CTP
CTP is used to collect data in a network by providing any-

cast communication to a set of root nodes, or base stations.

Node
Radio connectivity

0

2

3

1 4 5

6

7

8

Transient link
Figure 9: The radio topology of the network used to study
the bug, node 0 is the base station. The bug is triggered
when the radio link between nodes 4 and 5 fails for several
seconds.

As part of route establishment, all of the nodes broadcast
beacons containing a routing metric that represents the ex-
pected number of transmissions (ETX) to reach the base
station. Each node chooses its best next hop to a base sta-
tion as the neighbor with the lowest ETX after receiving
three consecutive beacons from that neighbor.

CTP differs from previous beacon based approaches in
that the rate at which a node sends beacons is dynamic and
based on network conditions. Initially, the beacon interval
is set to its lowest value of 128 milliseconds. In order to
save energy, the beacon interval increases exponentially up
to 512 seconds as routes stabilize.

4.5.2 Description of the Bug
We use Figure 9 as an example network where the tran-

sient failure of the link between nodes 4 and 5 causes the net-
work to become temporarily partitioned. After the network
becomes partitioned, the nodes on the far side of the parti-
tion (nodes 5 through 8) remove their routes to the nodes
on the base station side (nodes 0 through 4), and eventu-
ally from their routing tables altogether. Nodes 5 through
8 repeatedly choose each other as the next hop neighbor as
no route to a base station is present. After the partition is
repaired, establishing a route to one of nodes 0 through 4
requires observing at least three beacons from those nodes.
The problem is that nodes 0 through 4 are sending beacons
at the slowest rate of once every 512 seconds. As a conse-
quence, node 5 will not reestablish node 4 as its next hop
neighbor for as long as 1536 seconds (= 512 × 3) or 25 min-
utes. The reason for slow beacon rate at nodes 0 through
4 is that a good route to the base station has already been
established and there is no need to update their routes.

4.5.3 Experimental setup
This bug can be reproduced in lab by creating an artifi-

cial network partition by moving the nodes away from the
network. In a real network there are many reasons that
radio links might fail for several seconds creating network
partitions. For example, radio links fail when noise floor is
increased by other electronics or when path loss is created by
a temporary high power source obstruction passing between
nodes.

To explore this bug, we used a testbed of Telosb nodes
in the network layout as shown in Figure 9. The nodes are
running MultihopOscilloscope and TinyOS 2.1.2. The radio
link between nodes 4 and 5 was broken at 30 seconds and re-
established at 50 seconds by moving nodes 5 through 8 away
from the network. Even though the partition was repaired
in 20 seconds, it took over 25 minutes for data messages
from nodes 5 through 8 to reach the basestation.

0	
200	
400	
600	
800	
1000	
1200	
1400	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	 120	

ET
X	

Time	 (s)	

Node	 4	

Node	 5	

Figure 10: The ETX values on nodes 4 and 5. Due to the
bug, the ETX of node 4 continues to grow even after the
link is repaired at 50 seconds.

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	 120	
Time	 (s)	

Figure 11: Beacon messages sent by node 5 and received by
node 4.

4.5.4 Diagnosing the Bug with Tardis

As described in Section 2.5, the typical workflow is for
simple invariants to be checked at the basestation. An in-
variant can require that a message from each node is received
within a time period, for example, MultihopOscilloscope ex-
pects data every 5 seconds. When the invariant is violated,
the basestation disseminates a command to all nodes to not
overwrite their traces starting at the current time. It is
useful that the dissemination does not depend on the CTP
routing protocol. Also dissemination provides eventual de-
livery, so that when the radio links recover from the failures
the command will be delivered.

A key advantage of Tardis is that it can replay the com-
plete state of memory, unlike TinyTracer which only records
control flow or Envirolog which must be instructed what val-
ues to record [26, 17]. In this case, ETX is a key variable,
which can be replayed without any additional instrumenta-
tion. ETX is the metric used to decide which node should
be the next hop. Figure 10 show the ETX value after every
call to route update on node 5. At 30 seconds, the increasing
value is caused by the partitioned nodes repeatedly choosing
each other as the next hop neighbor without any route to a
base station actually being present. The continuously rising
ETX is a sign that the network has become partitioned, the
programmer will want to know duration of the partition and
if that is the only cause for the missing data. By replaying
the nodes and observing the partitioned node’s routing ta-
bles, it is possible to see that node 5 was connected to node
4 before the partition. This would lead the programmer to
node 4. Figure 11 shows from the perspective of node 4, all
of the beacons received from node 5.

It is clear that the radio link between nodes 4 and 5 was
repaired by the 50 second mark, only 20 seconds after that
partition began. While the beacon rate is very high at node
5, node 4 is sending beacons at the lowest rate of every 512

0	

2	

4	

6	

8	

10	

12	

14	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	

Lo
gg
in
g	
Ra

te
	 (K

B/
s)
	

Time	 (s)	

Node	 4	

Node	 5	

Figure 12: The rate at which the log grows at nodes 4 and
5. The link between nodes 4 and 5 fails at 30 seconds and
returns at 50 seconds.

seconds. This leads the programmer to conclude that node
4 is missing a condition that will cause it to reset its beacon
interval in this scenario because three beacons from node 4
will help node 5 to find a better path to the base station
through node 4.

4.5.5 Bug Fix
The suggested fix is to add an additional condition to re-

set the beacon interval of CTP. The beacon interval is reset
when a beacon is received with an ETX that is significantly
larger than the node’s own ETX. The intuition is that nodes
within one radio range (neighbors) should not have signifi-
cantly different ETX values. The following code is added to
the receive beacon function.

if (rcvBeacon->etx > routeInfo.etx + 100)
{ call CtpInfo.triggerRouteUpdate(); }

We chose ETX difference of 100, representing 10.0 ex-
pected retransmissions, because it is much higher than the
expected ETX difference between neighbors, which is usu-
ally around 20. In this case, resetting the beacon interval
(which is done by triggerRouteUpdate would cause a
node to send beacons at the highest rate of every 128 mil-
liseconds. These beacons would help the distressed neigh-
bors with very high ETX values to pick that node as the
next hop almost instantaneously.

4.5.6 Cost of Logging
Tardis logging rate is low enough that the traces can be

collected for a duration much longer than the partition pe-
riod. The rates of Tardis log growth for both nodes 4 and 5
are shown in Figure 12. During normal operation in the first
30 seconds the logging rate at both nodes is below 1 KB/s.
This quickly changes for node 5 when the partition starts at
30 seconds. The increased logging is caused by an increase
in radio messages being sent and received. This is because
data messages are being fruitlessly forwarded through rout-
ing loops, and beacons are being sent at the highest rate by
nodes on the far side of the network.

Node 4 sees an increase in logging only after the partition
is repaired at 50 seconds. The high logging rate is caused
by the beacon messages received from node 5.

5 Discussion
There are some limitations in the current implementa-

tion of Tardis CIL. Expressions containing a read from a

peripheral register can only be identified if the register is
addressed with a constant. This is the typical method for
addressing registers because they are at fixed locations in
memory. One exception is the ADC data registers which
form a 15 word array of registers. Tardis CIL could be mod-
ified to instrument all instructions with a memory reference
where the base is a constant equal to a peripheral register
address. Another limitation is Tardis CIL cannot identify
reads from DMA. DMA can be used to transfer peripheral
register values to memory, resulting in memory containing
non-deterministic values. A solution would be for Tardis
CIL to instrument the DMA interrupt handler with code
that discovers the range of memory written to and transfers
the block of memory to the logger.

Our current work focuses on the replay of a single node.
Messages received by the node are faithfully reproduced
from the captured non-determinism. However, for bugs which
are manifested through the interaction of multiple nodes, it
is useful to replay nodes in a consistent manner, meaning
no message receives are replayed before their correspond-
ing message sends. The standard method is to use Lamport
clocks and has been illustrated for distributed record and re-
play by liblog [8]. A recently proposed lightweight causality
tracking technique, CADeT, is specifically designed for re-
source constrained WSNs [25]. This technique only requires
recording a couple of additional counters per message to the
log and could easily be applied to Tardis.

6 Related Work
We structure our discussion of related work in three cat-

egories — (1) record and replay of single nodes (on desktop
class machines), (2) record and replay in distributed appli-
cations, and (3) WSN debugging.

6.1 Replay of Single Nodes
One class of solutions deals with multiprocessor machines

and how to handle the non-determinism introduced by dif-
ferent processes running on the different processors on the
same machine. The challenges are to determine what needs
to be logged — the complete logging involves assigning a
global order to all shared memory accesses and this incurs
a 10-100× runtime overhead [15]. Some recent techniques
[13] make the observation that the thread access orders of
shared memory locations can be recorded cheaply with sup-
port from static analysis. R2 [11] allows developers to choose
which application functions to record. Our work is simpli-
fied by not considering the added burden of non-determinism
introduced by multiple core and processor systems. This is
justified by the rarity of multiple core µC used in WSN and
energy conscious embedded applications.

6.2 Replay of Distributed Applications
The solutions in this category deal with replaying applica-

tions that have multiple components that exchange messages
among themselves. The primary concern is to faithfully re-
produce the global state from the local states and the mes-
sage exchanges. The primary systems in this category are
liblog [8], Friday [7], and iTarget [34].
liblog is an application level library which intercepts

calls to libc and logs their results. Friday builds on top
of liblog and provides a system that can track arbitrary
global invariants at the fine granularity of source symbols.
iTarget decides on a replay interface for the application so
that its interactions with other software elements can be

faithfully recorded.
In contrast to the above line of work, we focus on trac-

ing events of a single node. Our work could be extended
to replay of multiple nodes using the techniques described
above. Specifically, this implies tracking causality across
nodes through message sends and receives.

6.3 WSN Debugging
The works in this category can be sub-divided into syn-

chronous and asynchronous debugging. In synchronous de-
bugging, the developer interacts with the application while
the application is running and tries to debug any problem
as it arises [33, 35]. Minerva [24] connects a debug board to
each node in the network. The debug boards use the µCs
JTAG port to enable stopping all nodes simultaneously to
take snapshots of memory and collecting traces of the node’s
state while they are running.

In asynchronous debugging, information is collected at
runtime and used for offline debugging. Tardis falls into
the class of asynchronous debugging. Within asynchronous
debugging, some techniques rely on a model checking ap-
proach [16] while most rely on collecting runtime information
and deducing anomalous behavior automatically by mining
patterns in the runtime information [26, 29, 31]. The record
and replay approaches for WSNs are most closely related to
our current work.

Envirolog [17] allows a developer to specify events (e.g.,
function calls or variable updates) at any layer in code to be
captured during a record phase and then reproduced dur-
ing a replay phase. Tardis is different from Envirolog in
three ways. First, Envirolog cannot reproduce all race con-
ditions. Envriolog uses timestamps to reproduced the tim-
ing of events. Given the limitations of the TinyOS clock
and timer modules it is only able to deliver events with mil-
lisecond precision. This may result in missed race condition
bugs, because events are delivered thousands of cycles dif-
ferently from when they were recorded. Tardis is able to
reproduce all race conditions because it delivers events with
the precision of a single instruction by recording the PC
value and cycle count. Second, Envirolog does not explore
recording a sufficient set of non-deterministic events neces-
sary for complete and consistent replay at the system level.
It is not sufficient to record only sensor readings and ra-
dio send and receive function calls. For example, if a node
receives a command to change its sleep cycle, that com-
mand must be reproduced during replay or the recorded log
may contain events that occur when the node is asleep dur-
ing replay. Finally, Envirolog does not explore compression
of logged events. If Envirolog were setup to log all non-
determinism, then it would be comparable to the baseline
case of where no compression is used.

Aveksha [29] uses extra hardware to record traces from
the µC JTAG port without interfering with the execution
of the node. The events that can be recorded are limited
by the bandwidth of the JTAG port, for example, function
entry and exit points but not complete control flows. Min-
erva [24] also uses the JTAG port to collect runtime traces,
which enables it to also be used for asynchronous debugging.
TinyTracer [26] records the control flow both within func-
tions and across functions. FlashBox [3] is similar in its goals
to our work. It adds a compiler pass which instruments code
to record non-deterministic information, specifically the ex-
ecution timeline of interrupts. The approach requires mod-
ified hardware: an additional µC and flash are dedicated

to logging. The recorded information only allows a replay
of the timeline of interrupts. Prius [27] is a software solu-
tion for compressing control flow traces. It relies on offline
training to learn what are the common control flow patterns
and then compressing runtime trace segments that match
against these patterns. We could use it as part of Tardis,
provided we can identify a priori common patterns. Also,
Prius’ reliance on offline training with representative traces
raises the bar on its adoption. These existing solutions do
not provide comprehensive system-level replay, i.e., replay
that is able to reproduce both control flow at an instruction
level and the state of memory at any point in time. Using
these techniques requires knowing in advance where a bug
is likely to manifest itself and be diagnosable.

7 Conclusion
Tardis is the first general-purpose software-only record

and replay implementation for WSNs. Our technique sup-
ports a complete re-execution of the code, thereby enabling
the use of many other debugging tools during replay. We
have designed and implemented Tardis, which consists of
a compiler plugin, a runtime component, and a replay com-
ponent. We have made seven key observations common to
sensor networks that enable record and replay. The cur-
rent implementation targets the MSP430 µC, however it is
generalizable to other architectures by creating new register
definition files.

8 Acknowledgments
We thank the anonymous referees and our shepherd, Kay

Römer. We thank Dr. Henry Medeiros and Anderson Nasci-
mento for alerting us to unusually long lived routing loops
observed in CTP, and Spensa Technologies, Inc. for pro-
viding us access to their testbed. This material is based
upon work supported by the National Science Foundation
under Grant Nos. ECCS-0925851 and CNS-0834529. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

9 References
[1] LZRW1. http://www.ross.net/compression/lzrw1.html.

[2] TinyOS. http://www.tinyos.net/.

[3] S. Choudhuri and T. Givargis. FlashBox: A system for logging
non-deterministic events in deployed embedded systems. In
Proc. of SAC. ACM, 2009.

[4] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr.
Efficient memory safety for TinyOS. In Proc. of SenSys. ACM,
2007.

[5] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A lightweight
and flexible operating system for tiny networked sensors. In
Proc. of LCN. IEEE, 2004.

[6] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels,
T. Voigt, R. Sauter, and P. J. Marrón. Towards
interoperability testing for wireless sensor networks with
COOJA/MSPSim. In Proc. of EWSN. Springer, 2009.

[7] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica.
Friday: Global comprehension for distributed replay. In Proc.
of NSDI. USENIX, 2007.

[8] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. In Proc. of ATEC.
USENIX, 2006.

[9] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection tree protocol. In Proc. of SenSys. ACM, 2009.

[10] T. Goodspeed. Goodfet. http://goodfet.sourceforge.net.

[11] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An application-level kernel for

record and replay. In Proc. of OSDI. USENIX, 2008.
[12] J. L. Hill and D. E. Culler. Mica: A wireless platform for

deeply embedded networks. IEEE Micro, 22(6):12–24, Nov.
2002.

[13] J. Huang, P. Liu, and C. Zhang. LEAP: Lightweight
deterministic multi-processor replay of concurrent Java
programs. In Proc. of FSE. ACM, 2010.

[14] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
Proc. of ATEC. USENIX, 2005.

[15] T. LeBlanc and J. Mellor-Crummey. Debugging parallel
programs with instant replay. Computers, IEEE Trans. on,
100(4):471–482, 1987.

[16] P. Li and J. Regehr. T-check: Bug finding for sensor networks.
In Proc. of IPSN. ACM, 2010.

[17] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A.
Stankovic. Achieving repeatability of asynchronous events in
wireless sensor networks with envirolog. In Proc. of
INFOCOM. IEEE, 2006.

[18] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and
transformation of c programs. In Proc. of CC. Springer-Verlag,
2002.

[19] H. Nguyen, A. Forster, D. Puccinelli, and S. Giordano. Sensor
node lifetime: An experimental study. In PERCOM
Workshops. IEEE, 2011.

[20] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt.
Cross-level sensor network simulation with COOJA. In Proc.
of LCN. IEEE, 2006.

[21] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proc. of SenSys. ACM,
2004.

[22] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling
ultra-low power wireless research. In Proc. of IPSN. IEEE,
2005.

[23] C. M. Sadler and M. Martonosi. Data compression algorithms
for energy-constrained devices in delay tolerant networks. In
Proc. of SenSys. ACM, 2006.

[24] P. Sommer and B. Kusy. Minerva: Distributed tracing and
debugging in wireless sensor networks. In Proc. of SenSys.
ACM, 2013.

[25] V. Sundaram and P. Eugster. Lightweight message tracing for
debugging wireless sensor networks. In Proc. of DSN. IEEE,
2013.

[26] V. Sundaram, P. Eugster, and X. Zhang. Efficient diagnostic
tracing for wireless sensor networks. In Proc. of SenSys. ACM,
2010.

[27] V. Sundaram, P. Eugster, and X. Zhang. Prius: Generic hybrid
trace compression for wireless sensor networks. In Proc. of
SenSys. ACM, 2012.

[28] R. Tan, G. Xing, J. Chen, W.-Z. Song, and R. Huang.
Quality-driven volcanic earthquake detection using wireless
sensor networks. In Proc. of RTSS. IEEE, 2010.

[29] M. Tancreti, M. Hossain, S. Bagchi, and V. Raghunathan.
Aveksha: A hardware-software approach for non-intrusive
tracing and profiling of wireless embedded systems. In Proc. of
SenSys. ACM, 2011.

[30] H. Thane and H. Hansson. Using deterministic replay for
debugging of distributed real-time systems. In Proc. of
Euromicro-RTS. IEEE, 2000.

[31] M. Wang, Z. Li, F. Li, X. Feng, S. Bagchi, and Y.-H. Lu.
Dependence-based multi-level tracing and replay for wireless
sensor networks debugging. In Proc. of LCTES. ACM, 2011.

[32] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In Proc. of OSDI. USENIX, 2006.

[33] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim,
J. Jeong, J. Hui, P. Dutta, and D. Culler. Marionette: Using
RPC for interactive development and debugging of wireless
embedded networks. In Proc. of IPSN. ACM, 2006.

[34] M. Wu, F. Long, X. Wang, Z. Xu, H. Lin, X. Liu, Z. Guo,
H. Guo, L. Zhou, and Z. Zhang. Language-based replay via
data flow cut. In Proc. of FSE. ACM, 2010.

[35] J. Yang, M. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant:
A comprehensive source-level debugger for wireless sensor
networks. In Proc. of SenSys. ACM, 2007.

[36] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. Information Theory, IEEE Trans. on,
23(3):337–343, 1977.

http://www.ross.net/compression/lzrw1.html
http://www.tinyos.net/
http://goodfet.sourceforge.net

	Introduction
	Record and Replay
	Challenges of Record and Replay in WSNs
	Tardis Approach
	Contributions

	High-Level Design and Implementation
	Overview
	Compile Time
	Recording Peripheral Register Reads
	Recording Interrupts

	Runtime System
	Replay
	Debugging Workflow

	Encoding and Compression of Non-Deter- ministic Data
	Overview
	Non-determinism of Registers
	Polling loops
	Register Masking Pattern
	Sleep-wake Cycling and Interrupts
	Timer Registers
	State Registers
	Data Registers
	Log Format

	Evaluation
	Experimental Setup
	Runtime Overhead
	Flash Size
	Energy Overhead
	CPU Overhead

	Static Overhead
	Comparison with gzip, S-LZW, and TinyTracer
	CTP Bug Case Study
	Description of CTP
	Description of the Bug
	Experimental setup
	Diagnosing the Bug with Tardis
	Bug Fix
	Cost of Logging

	Discussion
	Related Work
	Replay of Single Nodes
	Replay of Distributed Applications
	WSN Debugging

	Conclusion
	Acknowledgments
	References

