
RESEARCH POSTER PRESENTATION DESIGN © 2011 

www.PosterPresentations.com 

!"#$% &'(% )*% +,$#%
,-./&012%)31245672%

,2809%:012%

(;91426:%(<.%
=10%"'%0;>0368?%

-0@391426:%(<.%
=10%:012%0;>0368?%

,-.%

AVEKSHA: A Hardware-Software Approach for Non-intrusive Tracing and Profiling of 
Wireless Embedded Systems 

•  Current approaches to debugging deployed Wireless Sensor 
Networks (WSN) can be improved 

–  Software: affects timing and is OS specific 
–  Hardware: bench debuggers not suitable for deployment 

•  How can we perform tracing and profiling of software that is 
–  Non-intrusive 
–  Able to monitor at high spatial and temporal granularity 
–  Low energy 
–  Low cost 
–  Easy to integrate and deploy 

Problem	
  Statement	
  

Solu.on	
  Approach	
  

•  JTAG interface uses 4 pins 
–  TDO data output 
–  TDI data input 
–  TMS select mode 
–  TCK clock 

Interfacing	
  to	
  the	
  OCDM	
  over	
  JTAG	
   Design	
   Bug	
  Fixed	
  

Reference	
  
M. Tancreti, M. S. Hossain, S. Bagchi, V. Raghunathan, “AVEKSHA: A 
Hardware-Software Approach for Non-intrusive Tracing and 
Profiling of Wireless Embedded Systems,” in Proceedings of the 9th 
ACM Conference on Embedded Networked Sensor Systems, SenSys 
’11, ACM, 2011. 

•  AVEKSHA is a hardware/software approach 
•  Exploit on-chip debug module (OCDM) 

–  Comes free on most MCUs (also called EEM on MSP430) 
–  Exposed through JTAG interface 
–  Asynchronous with MCU operation 
–  Advanced features: complex breakpoints and 

watchpoints, triggered state-storage 
•  Approach 

1.  Poll OCDM state 
2.  Filter for important events 
3.  Store to flash or stream over USB 

School	
  of	
  Electrical	
  and	
  Computer	
  Engineering,	
  Purdue	
  University	
  
	
  

Ma#hew	
  Tancre,,	
  Mohammad	
  Sajjad	
  Hossain,	
  Saurabh	
  Bagchi,	
  Vijay	
  Raghunathan	
  

What	
  We	
  Built:	
  The	
  Telos	
  Debug	
  Board	
  

•  Reverse engineered an important JTAG protocol (MSP430) 
–  A common low-power sensor network MCU 
–  Enables profiling and tracing for this class of MCU chip 

•  Designed a HW/SW debugger suitable for deployed WSN 
–  Non-intrusive (does not alter software timing) 
–  OS and compiler agnostic 
–  Low power 
–  No significant hardware modification to mote 
–  Easy to deploy (does not need to be customized per 

application) 
•  Validated design through case studies 

–  Tracing and profiling in TinyOS and Contiki 
–  Found resource consuming bug in TinyOS low-power-

listening radio stack 

Our	
  Contribu.ons	
  

•  Connects to mote IO and JTAG 
•  Has an MCU for initialization and configuration 
•  Has an FPGA for high speed polling of OCDM state 

•  PC polling down to granularity of 7 mote cycles 
•  Usually enough to catch every function transition 
•  Knowledge of call graph required to convert polled PC data into 

profile 

Profiling	
  with	
  PC	
  Polling	
  

Tracing	
  and	
  Profiling	
  Modes	
  

Acknowledgements	
  

This work was supported in part by NSF grants CNS-0953468, 
ECCS-0925851, and CNS-0716271. The views expressed represent 
those of the authors and do not necessarily reflect the views of 
the sponsoring agency. 

0 1 2 3 4 5 6 7BIT

TDO

TDI

TMS

TCK

•  Watchpoint polling 
–  Total of 8 triggers can be set through JTAG 
–  Each trigger specifies conditions based on the value of 

the data or address bus (MDB/MAB), and the operation: 
read, write, or instruction fetch (-R/-W/-F) 

–  Triggers can be set for generic events e.g., function call 
and return 

–  A nop instruction can be used by the programmer to 
specify arbitrary trigger locations in code 

•  Watchpoint mode 
–  State-storage buffer is 8 entries 
–  Each poll and read of state buffer takes 122 mote cycles 
–  Cannot exceed burst of 8 events in 976 mote cycles 
–  For example, suitable for monitoring task execution and 

state transitions in TinyOS but not function calls 
•  PC polling mode 

–  Only provides PC values, cannot get MDB and MAB values 
–  Each PC poll takes 7 mote cycles 
–  Suitable for function call granularity 

•  MSP430 OCDM responds to various commands sent over JTAG 
•  We use the following command sequences 

–  Set watchpoint and breakpoint triggers 
–  Poll CPU status (e.g., if halted at a breakpoint) 
–  Poll the state-storage buffer (for information stored at 

watchpoint trigger) 
–  Poll the program counter (PC) 

•  These sequences map to 3 operation modes of the board: 
watchpoint (WP), breakpoint (BP), and pc polling 

OS	
  Agnos.c	
  

•  Figure shows processes of a Contiki light tracking application 
•  We can change from debugging TinyOS tasks to Contiki processes 

without reconfiguring the board 

USB Hub USB/UART
Adapter MCU

UARTUSB

Upstream
USB

Mote
USB

Mote
Expansion
 Interface

FPGA

16

Mote
JTAG

control

data
4

•  FPGA for polling JTAG and filtering events 
–  Would require MCU at much higher clock frequency 

•  MCU for initialization and coordination 
•  USB connectivity to stream data to host PC 

PC poll Function
lookup Filter Output

Buffer
PC

addr
func
ptr

func
ptr

16 16 16

Mote
JTAG

MCU

•  Goal is to poll JTAG at maximum possible speed 
•  For PC polling pipeline stages are: poll PC address, binary search 

for function pointer, filter: is this a new function, output buffer 

A	
  Bug	
  Discovered	
  in	
  TinyOS	
  

•  While testing we discovered a bug in TinyOS 
•  PowerCycleP_startRadio task re-posts itself during startup 

when SubControl_start() != SUCCESS 
•  But, when radio already started SubControl__start() = EALREADY 

•  Following hypothetical code shows how re-post can go on 
indefinitely 

•  A simple fix is to add a condition for EALREADY 

•  Now patched in TinyOS repository (bug tracker issue 51) 

Speed	
  of	
  Polling	
  

•  PC polling 
–  OCDM allows continuous polling of program counter 
–  Provides information about program control flow 
–  PC value can be mapped to a code block or function 


