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AVEKSHA: A Hardware-Software Approach for Non-intrusive Tracing and Profiling of 
Wireless Embedded Systems 

•  Current approaches to debugging deployed Wireless Sensor 
Networks (WSN) can be improved 

–  Software: affects timing and is OS specific 
–  Hardware: bench debuggers not suitable for deployment 

•  How can we perform tracing and profiling of software that is 
–  Non-intrusive 
–  Able to monitor at high spatial and temporal granularity 
–  Low energy 
–  Low cost 
–  Easy to integrate and deploy 

Problem	
  Statement	
  

Solu.on	
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•  JTAG interface uses 4 pins 
–  TDO data output 
–  TDI data input 
–  TMS select mode 
–  TCK clock 
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•  AVEKSHA is a hardware/software approach 
•  Exploit on-chip debug module (OCDM) 

–  Comes free on most MCUs (also called EEM on MSP430) 
–  Exposed through JTAG interface 
–  Asynchronous with MCU operation 
–  Advanced features: complex breakpoints and 

watchpoints, triggered state-storage 
•  Approach 

1.  Poll OCDM state 
2.  Filter for important events 
3.  Store to flash or stream over USB 
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What	
  We	
  Built:	
  The	
  Telos	
  Debug	
  Board	
  

•  Reverse engineered an important JTAG protocol (MSP430) 
–  A common low-power sensor network MCU 
–  Enables profiling and tracing for this class of MCU chip 

•  Designed a HW/SW debugger suitable for deployed WSN 
–  Non-intrusive (does not alter software timing) 
–  OS and compiler agnostic 
–  Low power 
–  No significant hardware modification to mote 
–  Easy to deploy (does not need to be customized per 

application) 
•  Validated design through case studies 

–  Tracing and profiling in TinyOS and Contiki 
–  Found resource consuming bug in TinyOS low-power-

listening radio stack 

Our	
  Contribu.ons	
  

•  Connects to mote IO and JTAG 
•  Has an MCU for initialization and configuration 
•  Has an FPGA for high speed polling of OCDM state 

•  PC polling down to granularity of 7 mote cycles 
•  Usually enough to catch every function transition 
•  Knowledge of call graph required to convert polled PC data into 

profile 
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•  Watchpoint polling 
–  Total of 8 triggers can be set through JTAG 
–  Each trigger specifies conditions based on the value of 

the data or address bus (MDB/MAB), and the operation: 
read, write, or instruction fetch (-R/-W/-F) 

–  Triggers can be set for generic events e.g., function call 
and return 

–  A nop instruction can be used by the programmer to 
specify arbitrary trigger locations in code 

•  Watchpoint mode 
–  State-storage buffer is 8 entries 
–  Each poll and read of state buffer takes 122 mote cycles 
–  Cannot exceed burst of 8 events in 976 mote cycles 
–  For example, suitable for monitoring task execution and 

state transitions in TinyOS but not function calls 
•  PC polling mode 

–  Only provides PC values, cannot get MDB and MAB values 
–  Each PC poll takes 7 mote cycles 
–  Suitable for function call granularity 

•  MSP430 OCDM responds to various commands sent over JTAG 
•  We use the following command sequences 

–  Set watchpoint and breakpoint triggers 
–  Poll CPU status (e.g., if halted at a breakpoint) 
–  Poll the state-storage buffer (for information stored at 

watchpoint trigger) 
–  Poll the program counter (PC) 

•  These sequences map to 3 operation modes of the board: 
watchpoint (WP), breakpoint (BP), and pc polling 
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•  Figure shows processes of a Contiki light tracking application 
•  We can change from debugging TinyOS tasks to Contiki processes 

without reconfiguring the board 
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•  FPGA for polling JTAG and filtering events 
–  Would require MCU at much higher clock frequency 

•  MCU for initialization and coordination 
•  USB connectivity to stream data to host PC 

PC poll Function
lookup Filter Output

Buffer
PC

addr
func
ptr

func
ptr

16 16 16

Mote
JTAG

MCU

•  Goal is to poll JTAG at maximum possible speed 
•  For PC polling pipeline stages are: poll PC address, binary search 

for function pointer, filter: is this a new function, output buffer 

A	
  Bug	
  Discovered	
  in	
  TinyOS	
  

•  While testing we discovered a bug in TinyOS 
•  PowerCycleP_startRadio task re-posts itself during startup 

when SubControl_start() != SUCCESS 
•  But, when radio already started SubControl__start() = EALREADY 

•  Following hypothetical code shows how re-post can go on 
indefinitely 

•  A simple fix is to add a condition for EALREADY 

•  Now patched in TinyOS repository (bug tracker issue 51) 

Speed	
  of	
  Polling	
  

•  PC polling 
–  OCDM allows continuous polling of program counter 
–  Provides information about program control flow 
–  PC value can be mapped to a code block or function 


