
Demonstration Abstract: Software-Only System-Level
Record and Replay in Wireless Sensor Networks

Matthew Tancreti1, Vinaitheerthan Sundaram2, Saurabh Bagchi1,2, and Patrick Eugster2,3,*

1School of Electrical and Computer Engineering, Purdue University

2Department of Computer Science, Purdue University

3Department of Computer Science, TU Darmstadt

ABSTRACT
Wireless sensor networks (WSNs) are plagued by the pos-

sibility of bugs manifesting only at deployment. However,
debugging deployed WSNs is challenging for several reasons—
the remote location of deployed sensor nodes, the non- deter-
minism of execution that can make it difficult to replicate a
buggy run, and the limited hardware resources available on
a node. In particular, existing solutions to record and replay
debugging in WSNs fail to capture the complete code exe-
cution, thus negating the possibility of a faithful replay and
causing a large class of bugs to go unnoticed. In short, record
and replay logs a trace of predefined events while a deployed
application is executing, enabling replaying of events later
using debugging tools. Existing recording methods fail due
to the many sources of non-determinism and the scarcity of
resources on nodes.

In this demo, we present Trace And Replay Debugging
In Sensornets (Tardis), a software-only approach for deter-
ministic record and replay of WSN nodes. Tardis is able to
record all sources of non-determinism, based on the obser-
vation that such information is compressible using a combi-
nation of techniques specialized for respective sources. De-
spite their domain-specific nature, the techniques presented
are applicable to the broader class of resource-constrained
embedded systems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Wireless Sensor Networks, Tracing, Debugging, Replay

∗ P. Eugster is partially supported by the German Research
Foundation (DFG) under project MAKI (“Multi-mechanism
Adaptation for the Future Internet”).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
IPSN ’15, April 14 - 16, 2015, Seattle, WA, USA
ACM 978-1-4503-3475-4/15/04.
http://dx.doi.org/10.1145/2737095.2741839

1 Introduction
Debugging is one of the fundamental tools for identifying

software defects (“bugs”). Debugging is particularly relevant
in wireless sensor networks (WSNs), as these are susceptible
to unpredictable runtime conditions. Indeed, programmers
of WSNs use tools such as simulators [6, 2], safe code en-
forcement [1], and formal testing [4] prior to deployment of
an application in the field, yet exhaustive testing of all con-
ditions in the lab is infeasible, because WSNs are deployed
in austere environments whose behavior cannot be easily
duplicated in a laboratory.

Debugging is often performed in a cyclic process of re-
peatedly executing a program and tracking down bugs. In
WSNs, cyclic debugging can be lengthy and laborious. For
example, nodes are often not easily physically accessible,
meaning that the programmer must rely on low-power wire-
less links to painstakingly collect any data of interest. Also,
there may not be enough information available to immedi-
ately diagnose a bug, so the network must be wirelessly re-
programmed with code to collect additional debugging data.
This can take minutes, and waiting for the bug to resurface
may also take some time.

1.1 Record and Replay
Record and replay can potentially make the process of

cyclic debugging less tedious. With record and replay de-
bugging, program execution is recorded on-line and then
reproduced off-line. Record and replay cuts down on the
cyclic process of debugging by capturing a program’s exe-
cution such that it can be deterministically reproduced and
carefully examined off-line, perhaps in a hunt for elusive
bugs [8]. In addition, in WSNs, the recording can happen
on deployed nodes and the debugging can happen on the rel-
atively resource rich lab machines. The typical workflow for
record and replay in WSNs is that during normal execution
of a deployed WSN, the nodes execute instrumented bina-
ries that record a trace of all sources of non-determinism
to flash. The trace can then be brought back to the lab
for off-line replay. This can be done either through wireless
data collection or by physically accessing a node. In the lab,
the recorded data is fed into an emulator, which determin-
istically replays the node’s execution. The replay allows a
developer to examine the program’s execution, including its
interactions with the environment, at any arbitrary level of
detail, such as through setting breakpoints or querying the
state of memory. Such replay helps the developer identify
the root cause of bugs encountered in the field.



However, realizing record and replay for WSNs (and to
some extent in other embedded systems) is challenging for
several reasons: the record system must fit withing the bounds
of the severe resource constraints typical of WSNs, the record
system must not interfere with the soft real-time constraints
of WSNs, the system should be able to replay any execution
and memory state to be able to reproduce all types of soft-
ware bugs, and the system should be easily portable to the
various embedded platforms and OSs.

1.2 Contributions
Tardis is designed as a software-only system-level record

and replay solution for WSNs. In short, we address the four
challenges described above by handling all of the sources of
non-determinism and compressing each one in a resource ef-
ficient manner using respective domain-specific knowledge.
For example, one type of non-determinism is a read from
what we call a peripheral register. These are registers present
on the µC chip, but whose content is controlled from sources
external to the main processor. Reads to a register contain-
ing the value of an on-chip analog-to-digital (ADC) con-
verter are sources of non-determinism. We can reduce the
number of bits that must be stored by observing that an
ADC configured for 10-bit resolution in fact only has 10 bits
of non-determinism, despite 16 bit register size.

The compression scheme for each source of non-determinism
is informed by a careful observation of the kinds of events
that typically occur in WSN applications, for example, the
use of register masking which reduces the number of bits
which must be recorded—instead of the full length of the reg-
ister, only the bits that are left unmasked need be recorded.
By using the different compression schemes in an integrated
manner in one system, we are the first to provide a general-
purpose software-only record-and-replay functionality for WSNs.
By “general-purpose” we mean that it can handle all sources
of non-determinism and thus Tardis can be used for debug-
ging all kinds of bugs, whether related to data flow or control
flow. Previous work in software-based record-and-replay for
WSNs has captured only control flow (e.g., TinyTracer [7])
or only a subset of system variables (e.g., EnviroLog [5]).

2 Design and Implementation
The main capability of Tardis is to replay in an em-

ulator the original run of a sensor node faithfully down
to each instruction and the sequence between instructions.
Deterministic replay is achieved by starting from a check-
point of the processor’s state, and then replaying all sources
of non-determinism [3]. There are two broad sources of
non-determinism in WSNs: external inputs from memory
mapped I/O and the type and timing of interrupts. We will
use the term peripheral registers to refer to memory mapped
I/O, which includes registers that report the value of serial
I/O, real-time clocks, interrupt flags, analog-to-digital con-
verters, etc.

Tardis is designed to be used in situ to record events in
deployed sensor nodes for subsequent troubleshooting. The
overall operational flow is depicted in Figure 1, which depicts
three phases: compile-time, run-time, and off-line replay. In
the first phase, the CIL source-to-source compiler is used
to insert instrumentation for recording, into the code which
will execute on the sensor node. In the second phase, the
node executes in situ, and logs a checkpoint and a trace of its
execution to flash. It operates in the manner of a black box
recorder; when the flash is full, a new checkpoint is taken and

Application 
code 

OS 
code 

Instrumented 
source 

TARDIS 
Logger 

TARDIS CIL (S2S) 

Instrumentation 
mapping 

Binary 
firmware 

1. Compile-Time 2. Run-Time 

3. Off-line Replay 

Binary 
firmware 

RAM 

Uncompressed 
buffers 

Compressed 
buffers 

Flash 

Log 

TARDIS Replay 
Emulator Binary 

firmware 

Log Instrumentation 
mapping 

GCC 

Figure 1: The Tardis debugging process.

the oldest data is overwritten first. The third phase is the
replay, which happens in the laboratory running an emulator
on a (comparatively) resource-rich desktop-class machine.
During execution of the application on the emulator, the
trace of non-deterministic data is used to deterministically
reproduce the node’s execution.

3 Demonstration
With a laptop connected to a mote, we will demonstrate

all three phases of Tardis. First we will compile an unmod-
ified TinyOS application using the Tardis compiler wrap-
per. Then we will start the mote in trace mode, let it run
for some time recording its trace to flash, and then dump
the collected trace to the laptop using a serial connection.
Finally, we will replay the trace in a modified version of the
mspsim emulator, demonstrating that every instruction and
state of memory can be reproduced.

4 Acknowledgments
This material is based upon work supported by the Na-

tional Science Foundation under Grant Nos. ECCS-0925851
and CNS-0834529. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

5 References
[1] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr.

Efficient memory safety for TinyOS. In Proc. of SenSys. ACM,
2007.

[2] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels,
T. Voigt, R. Sauter, and P. J. Marrón. Towards interoperability
testing for wireless sensor networks with COOJA/MSPSim. In
Proc. of EWSN. Springer, 2009.

[3] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In Proc.
of ATEC. USENIX, 2005.

[4] P. Li and J. Regehr. T-check: Bug finding for sensor networks.
In Proc. of IPSN. ACM, 2010.

[5] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A.
Stankovic. Achieving repeatability of asynchronous events in
wireless sensor networks with envirolog. In Proc. of INFOCOM.
IEEE, 2006.

[6] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt.
Cross-level sensor network simulation with COOJA. In Proc. of
LCN. IEEE, 2006.

[7] V. Sundaram, P. Eugster, and X. Zhang. Efficient diagnostic
tracing for wireless sensor networks. In Proc. of SenSys. ACM,
2010.

[8] H. Thane and H. Hansson. Using deterministic replay for
debugging of distributed real-time systems. In Proc. of
Euromicro-RTS. IEEE, 2000.


	Introduction
	Record and Replay
	Contributions

	Design and Implementation
	Demonstration
	Acknowledgments
	References

