
Demo: AVEKSHA – A Hardware-Software Approach for

Non-intrusive Tracing and Profiling of Wireless Embedded

Systems
∗

Matthew Tancreti

Purdue University

West Lafayette, IN, USA

mtancret@purdue.edu

Mohammad Sajjad Hossain

Purdue University

West Lafayette, IN, USA

sajjad@purdue.edu

Saurabh Bagchi

Purdue University

West Lafayette, IN, USA

sbagchi@purdue.edu

Vijay Raghunathan

Purdue University

West Lafayette, IN, USA

vr@purdue.edu

Abstract
In this demo, we present AVEKSHA, a system for non-

intrusive tracing of execution at a high spatial and temporal
granularity suitable for an embedded wireless node, i.e., in
a low-cost manner and one that can be deployed at a large
scale1. AVEKSHA is based on an insight that most proces-
sors, including low-cost embedded processors, offer visibil-
ity into their internal workings through an On-Chip Debug
Module (OCDM), whose signals are exposed through a stan-
dard JTAG interface. This interface has been used by embed-
ded system engineers primarily for interactive debugging,
such as single stepping, showing values of registers, etc. We
show how this visibility, together with the fact that most
OCDMs provide a general-purpose method of setting trig-
gers, can be leveraged in AVEKSHA to perform automated
tracing in a deployed setting.
Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debug-
ging—Debugging Aids, Tracing
General Terms

Design, Measurement
Keywords

Wireless Sensor Network, Debugging, Tracing, JTAG
1 Introduction

It is often important to get an idea of the events occur-
ring in an embedded wireless node when it is deployed in
the field in a remote location, away from the convenience of
an interactive debugger. Such visibility can be useful for var-
ious purposes — for debugging any problem a posteriori in
the lab, by recreating the exact sequence of events that the
node experienced in the deployment (this approach is called
“record and replay-based debugging”) [1, 2]; for profiling
the operation of a node for the performance of its various
software components and the energy consumed by different

∗This work was supported in part by NSF grants CNS-
0953468, ECCS-0925851, and CNS-0716271. The views ex-
pressed represent those of the authors and do not necessarily reflect
the views of the sponsoring agency.

1AVEKSHA is a Sanskrit word that means “to monitor”.
Copyright is held by the author/owner(s).
SenSys’11, November 1–4, 2011, Seattle, WA, USA.
ACM 978-1-4503-0718-5/11/11

hardware and software components on the node [3, 4, 5]. As
an example of the latter use case, a system owner may be
interested in figuring out which software component is being
invoked most often and which software component is con-
suming the most energy per invocation. It is often not pos-
sible to do these determinations in a lab setting because the
events that the node experiences in the deployment cannot be
recreated in the lab and the events (and even their sequence)
can have a bearing on these questions.

We would like to have visibility at a fine granularity -
both spatially and temporally. Spatially fine visibility im-
plies that it should be possible to trace individual events of
interest as opposed to only bursts of events (clearly, tracing
every event is likely to be prohibitive) and it should be pos-
sible to trace performance and energy at fine code regions,
such as a function or a task (using TinyOS terminology).
This is desirable because the fine region of code can then
be debugged if it is determined through performance pro-
filing that this region is causing a performance bottleneck,
through energy profiling that it is consuming unexpectedly
large amounts of energy, or through record and replay that it
is the source of a bug. Temporally fine visibility implies that
it should be possible to do the tracing with a high sampling
frequency. Clearly, the two dimensions are not independent.
In order to trace small regions of code in a loop, it is neces-
sary to be able to trace at a fine temporal granularity.

While the problem motivation laid out above has been
clear to researchers for quite some time [6], it has proved
very difficult to provide a solution for low-cost embedded
wireless nodes that can operate at a large deployed scale. The
first line of attack has been to provide pure software solutions
[7, 1, 2]. Such solutions have perturbed the application too
much to be useful for many of the use cases indicated above.
For one, they change the timing behavior enough that some
bugs get suppressed. Else, they cause such a large slowdown
in the application execution that it is not possible to employ
them in a deployed setting. To get around this problem, a
recent software solution [2] has focused on a specific kind of
tracing (control flow tracing) and intelligent static analysis
and runtime trace collection, compression and storage. Thus,
it addresses one of the above usage scenarios. The second
line of research has developed hardware solutions for sub-



sets of the usage scenarios laid out above. For example, [5]
has developed a dedicated integrated circuit, implemented
using an FPGA, that is tightly integrated with the host pro-
cessor and its peripherals and can measure energy drawn ac-
curately at millisecond resolution. Quanto [4] is a solution
that de-emphasizes sophisticated hardware design. Instead,
it measures energy at the node level, uses indication from
device drivers about changes in power state, and performs
causality tracking to pin down energy usage due to individ-
ual activities. Thus, Quanto is a hardware-software solution,
and like all prior solutions that have a software part, is OS-
specific (in this case, TinyOS). At the high-end, tools such as
Green Hills Software’s SuperTrace probe and TimeMachine
are available, however, such solutions are expensive and not
available for many low-end embedded processors [8].

In summary, our problem statement is the following:
How to perform non-intrusive tracing of execution at a high
spatial and temporal granularity suitable for an embedded
wireless node, i.e., in a low-cost manner and one that can be
deployed at a large scale?

We make the following claims to novelty and practical
feasibility from AVEKSHA:

1. We present the first technique for non-intrusive tracing
of a wide variety of events, including arbitrary user-
defined events, in embedded wireless nodes.

2. Our tracing technique is agnostic to the operating sys-
tem, compiler infrastructure, or language in which the
application is implemented.

3. Our hardware is built using off-the-shelf components
and requires little effort in integrating with the appli-
cation board, which is modified only very slightly for
enabling the tracing.

4. Our solution is suitable for deployment at a large scale
because it is low cost, can operate on battery power, and
extracts program information directly from the applica-
tion processor.

2 Design
We develop a debug board formed of standardized com-

ponents – a microcontroller unit (MCU), which in our
case happens to be the same as the application processor,
MSP430F1611 from Texas Instruments, and an Actel FPGA,
both of which interact with the OCDM on the target appli-
cation processor over the JTAG interface. We refer to our
debug board as the Telos Debug Board (TDB) because it
is intended to be used with the Telos wireless sensor node
(however, our solution is not restricted to the Telos and can
easily be adapted to other embedded platforms based on the
MSP430 microcontroller, and with some effort to other em-
bedded platforms). The MSP430 OCDM (also referred to by
the microcontroller datasheets as the Enhanced Emulation
Module or EEM) allows AVEKSHA unprecedented visibil-
ity into the state of the application processor. Further, the
OCDM has a small circular buffer where events of interest
can be stored and subsequently drained by the FPGA on the
TDB. The triggering mechanism of the OCDM is very flex-
ible and is therefore attractive for AVEKSHA. For example,
the OCDM can be triggered to indicate when the application
processor has accessed a certain memory region or a periph-

eral device, such as a sensor. We find that the triggering
mechanism can be combined with thoughtful design to trace
all the events of interest for our three usage scenarios – per-
formance profiling, energy profiling, and record-and-replay.

AVEKSHA operates in one of three modes: breakpoint,
watchpoint, and program counter (PC) polling. Breakpoint
is useful in some contexts, however, it is intrusive and there-
fore does not meet our solution requirements. The watch-
point mode has AVEKSHA set triggers, where each trigger
unambiguously maps to an event of interest (such as when a
sensor is read). When a trigger fires, the application proces-
sor is not stopped, but the state is dumped to a buffer on the
OCDM, which is then emptied out by AVEKSHA. This is a
rate-limited operation and if events of interest happen with a
high enough frequency, the buffer overflows and AVEKSHA
misses some events of interest. In the PC polling mode, the
TDB tracks the program counter values of the application
processor without interrupting it. Then, it processes the PC
values to determine events of interest, such as when control
flow has entered a particular function. These three modes re-
veal different tradeoffs in terms of intrusiveness, the flexibil-
ity in defining which events to collect, and the rate at which
collection can be done.
3 Demonstration

We will show how the TDB can be used to trace events
and measure energy consumption using two representative
applications, one in TinyOS and one in Contiki. For the
TinyOS application, we will display a live trace of the tasks
and state transitions of the radio stack, as packets are being
received by a Telos mote. This is useful in understanding the
operation and energy consumption of the radio stack. The
Contiki application uses light readings to track movement.
We will display a trace of application processes, and indicate
how they correlate to tracking. The demonstration shows that
the TDB is OS agnostic, no reprogramming is required when
switching between the TinyOS and Contiki applications.
4 References
[1] M. Wang, Z. Li, F. Li, X. Feng, S. Bagchi, and Y.-H. Lu, “Dependence-based

multi-level tracing and replay for wireless sensor networks debugging,” in Pro-
ceedings of the 2011 SIGPLAN/SIGBED conference on Languages, compilers and
tools for embedded systems, LCTES ’11, (New York, NY, USA), pp. 91–100,
ACM, 2011.

[2] V. Sundaram, P. Eugster, and X. Zhang, “Efficient diagnostic tracing for wireless
sensor networks,” in Proceedings of the 8th ACM Conference on Embedded Net-
worked Sensor Systems, SenSys ’10, (New York, NY, USA), pp. 169–182, ACM,
2010.

[3] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro power meter for energy mon-
itoring of wireless sensor networks at scale,” in Proceedings of the 6th interna-
tional conference on Information processing in sensor networks, IPSN ’07, (New
York, NY, USA), pp. 186–195, ACM, 2007.

[4] R. Fonseca, P. Dutta, P. Levis, and I. Stoica, “Quanto: tracking energy in net-
worked embedded systems,” in Proceedings of the 8th USENIX conference on
Operating systems design and implementation, OSDI’08, (Berkeley, CA, USA),
pp. 323–338, USENIX Association, 2008.

[5] T. Stathopoulos, D. McIntire, and W. J. Kaiser, “The energy endoscope: Real-time
detailed energy accounting for wireless sensor nodes,” in Proceedings of the 7th
international conference on Information processing in sensor networks, IPSN ’08,
(Washington, DC, USA), pp. 383–394, IEEE Computer Society, 2008.

[6] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson, “Replay debugging of
real-time systems using time machines,” in Parallel and Distributed Processing
Symposium, IPDPS ’03, (Washington, DC, USA), pp. 288.2–, IEEE, 2003.

[7] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic, “Achieving
repeatability of asynchronous events in wireless sensor networks with envirolog,”
in INFOCOM 2006. 25th IEEE International Conference on Computer Commu-
nications. Proceedings, pp. 1 –14, april 2006.

[8] “Green hills software inc.” http://www.ghs.com/.


